Abstract
The authors introduce a neural computation architecture based on a stochastic Hopfield neural network model for solving job-shop scheduling. A computation circuit computes the total completion times (costs) of all jobs, and the cost difference is added to the energy function of the stochastic neural network. Using a simulated annealing algorithm, the temperature of the system is slowly decreased according to an annealing schedule until the energy of the system is at a local or global minimum. By choosing an appropriate annealing schedule, near-optimal and optimal solutions to job-shop problems can be found. The architecture of the system is diagrammed at both the functional and circuit levels. Simulation results are presented.
Original language | English |
---|---|
Pages | 283-290 |
Number of pages | 8 |
Publication status | Published - 1988 Dec 1 |
Externally published | Yes |
ASJC Scopus subject areas
- Engineering(all)