Abstract
We investigate superfluid phase transitions of asymmetric nuclear matter at finite temperature (T) and density (ρ) with a low proton fraction (Yp ≤ 0.2), which is relevant to the inner crust and outer core of neutron stars. A strong-coupling theory developed for two-component atomic Fermi gases is generalized to the four-component case, and is applied to the system of spin-1/2 neutrons and protons. The phase shifts of neutron-neutron (nn), proton-proton (pp) and neutron-proton (np) interactions up to k = 2 fm−1 are described by multi-rank separable potentials. We show that the critical temperature Tcnn of the neutron superfluidity at Yp = 0 agrees well with Monte Carlo data at low densities and takes a maximum value Tcnn= 1.68 MeV at ρ/ρ=0.14 with ρ0 = 0.17 fm−3. Also, the critical temperature Tcnn of the proton superconductivity for Yp ≤ 0.2 is substantially suppressed at low densities due to np-pairing fluctuations, and starts to dominate over Tcnn only above ρ/ρ=0.70(0.77) for Yp = 0.1(0.2), and (iii) the deuteron condensation temperature Tcd is suppressed at Yp ≤ 0.2 due to a large mismatch of the two Fermi surfaces.
Original language | English |
---|---|
Article number | 18477 |
Journal | Scientific reports |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 Dec 1 |
ASJC Scopus subject areas
- General