Synthesis of lipid A and its analogues for investigation of the structural basis for their bioactivity

Yukari Fujimoto, Yo Adachi, Masao Akamatsu, Yoshiyuki Fukase, Mikayo Kataoka, Yasuo Suda, Koichi Fukase, Shoichi Kusumoto

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)


As a step to elucidate the structural requirements for the endotoxic and antagonistic activity of lipid A derivatives, we have focused, in the present study, on the effects of the acyl moieties and acidic groups at the 1- and 4′- positions. We synthesized a new analogue corresponding to Rubrivivax gelatinosus lipid A, which has a characteristic symmetrical distribution of acyl groups on the two glucosamine residues with shorter acyl groups (decanoyl groups [C10] and lauryl groups [C12]) than Escherichia coli lipid A. Carboxymethyl analogues in which one of the phosphates was replaced with a carboxymethyl group were also synthesized with different distribution of acyl groups. Biological tests revealed that the distribution of acyl groups strongly affected the bioactivity. The synthetic Ru. gelatinosus type lipid A showed potent antagonistic activity against LPS, whereas its 1-O-carboxymethyl analogue showed weak endotoxic activity. These results demonstrated that when the lipid A has shorter (C10, C12) hexa-acyl groups, the bioactivity of lipid A is easily affected with small structural difference, such as the difference of acidic group or the distribution of acyl groups, and the bioactivity changes from endotoxic to agonistic or vice versa at this structural boundary for the bioactivity. We also designed, based on molecular mechanics calculations, and synthesized lipid A analogues possessing acidic amino acid residues in place of the non-reducing end phosphorylated glucosamine. Definite switching of the endotoxic or antagonistic activity was also observed depending on the difference of the acidic groups (phosphoric acid or carboxylic acid) in the lipid A analogues.

Original languageEnglish
Pages (from-to)341-347
Number of pages7
JournalJournal of Endotoxin Research
Issue number6
Publication statusPublished - 2005
Externally publishedYes


  • Conformation
  • IL-6 induction
  • Lipid A
  • Rubrivivax gelatinosus

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Molecular Biology
  • Cell Biology
  • Infectious Diseases


Dive into the research topics of 'Synthesis of lipid A and its analogues for investigation of the structural basis for their bioactivity'. Together they form a unique fingerprint.

Cite this