Targeted expression of tgfbip peptides in mouse and human tissue by maldi-mass spectrometry imaging

Venkatraman Anandalakshmi, Guillaume Hochart, David Bonnel, Jonathan Stauber, Shigeto Shimmura, Rajamani Lakshminarayanan, Konstantin Pervushin, Jodhbir S. Mehta

Research output: Contribution to journalArticlepeer-review


Stromal corneal dystrophies are a group of hereditary disorders caused by mutations in the TGFBI gene. The mutant TGFBIp is prone to protein aggregation and the mutant protein gets deposited in the cornea, leading to severe visual impairment. The mutations lead to a corneal specific protein aggregation suggesting the involvement of tissue-specific factors. The exact molecular mechanism of the process of tissue-specific protein aggregation remains to be elucidated. Differential proteolysis of mutant TGFBIp is a critical component of the disease pathology. The differential prote-olysis gives rise to shorter peptides that are highly aggregation-prone and initiate the aggregation cascade. Analyzing the proteolytic processing of the different TGFBIp mutant may provide insight to aid in understanding the amyloid aggregation mechanism. We developed a MALDI-MSI methodology to identify expression and spatial localization of TGFBIp peptides in the cornea. Corneal tissue samples were collected from both control and dystrophic patients (with 2 different mutations), embedded in OCT and sectioned. The sections were trypsin digested and subjected to mass spec-trometry imaging using a targeted approach to detect TGFBIp. MALDI-MSI identified peptides from TGFBIp that co-localized with the amyloid corneal deposits. In addition to the relative abundance data, the specific location of the peptides across the corneal sections as molecular signatures was also identified. Spatial distribution and intensity of the TGFBIp peptides showed differences between diseased and control models but also between the two LCD phenotypes. The TGFBIp peptide with m/z of 787.474 and m/z of 1179.579 showed increased expression in both LCD mutants compared to the controls. The peptide with m/z of 929.5 showed increased expression in the LCD phenotype with H626R mutation while the peptide with m/z of 1315.802 was abundant in the sample with R124C mutation. This initial report of 2D spatial protein signature and localization of TGFBIp may be expanded to other mutations to understand the proteolytic patterns of TGFBIp in different mutations.

Original languageEnglish
Article number97
Issue number7
Publication statusPublished - 2021 Jul


  • Amyloid fibrils
  • Cornea
  • Lattice corneal dystrophy
  • Mass spectrometry imaging (MSI)
  • Matrix-assisted laser desorption ionization (MALDI)
  • TGFBIp

ASJC Scopus subject areas

  • Analytical Chemistry
  • Filtration and Separation


Dive into the research topics of 'Targeted expression of tgfbip peptides in mouse and human tissue by maldi-mass spectrometry imaging'. Together they form a unique fingerprint.

Cite this