TY - GEN
T1 - The effect of trans-stilbene unit in the compensation of birefringence of poly(methyl methacrylate) in the random copolymerization method and anisotropic molecule dopant method
AU - Shafiee, Houran
AU - Tagaya, Akihiro
AU - Koike, Yasuhiro
PY - 2010/5/3
Y1 - 2010/5/3
N2 - We investigated the effects of trans-stilbene unit in compensating birefringence in the random copolymerization method and the anisotropic molecule dopant method. In the random copolymerization method, trans-stilbene methacrylate (TSMA) containing the trans-stilbene unit in the side chain was polymerized with methyl methacrylate (MMA) in solution polymerization to compensate the photoelastic birefringence and the orientational birefringence of poly(methyl methacrylate) (PMMA). In the anisotropic molecule dopant method, trans-stilbene was added to PMMA. In the both methods, the photoelastic birefringence and the orientational birefringence shifted from the negative side to the positive side with an increase in the concentration of trans-stilbene unit. 0.8 mol% of TSMA almost eliminated the photoelastic birefringence. Also, we demonstrated that poly(MMA/TSMA) exhibited no orientational birefringence with 1.9 mol% of TSMA. 2.0 mol% of trans-stilbene almost eliminated the photoelastic birefringence of PMMA. Similarly, we demonstrated compensating orientational birefringence with 2.0 mol% of trans-stilbene. Based on the results, the effects of trans-stilbene unit in compensation of orientational birefringence are almost the same in the two methods. However, in compensation of photoelastic birefringence, the trans-stilbene unit had 2.5 times higher effect in the random copolymerization method than that in the anisotropic molecule dopant method. Photoelastic birefringence is caused in elastic deformation below Tg, in which the side chains are mainly orientated while the polymer main chains are scarcely orientated. Therefore, we concluded that addition of trans-stilbene unit to the side chain enhanced the effect for compensating photoelastic birefringence.
AB - We investigated the effects of trans-stilbene unit in compensating birefringence in the random copolymerization method and the anisotropic molecule dopant method. In the random copolymerization method, trans-stilbene methacrylate (TSMA) containing the trans-stilbene unit in the side chain was polymerized with methyl methacrylate (MMA) in solution polymerization to compensate the photoelastic birefringence and the orientational birefringence of poly(methyl methacrylate) (PMMA). In the anisotropic molecule dopant method, trans-stilbene was added to PMMA. In the both methods, the photoelastic birefringence and the orientational birefringence shifted from the negative side to the positive side with an increase in the concentration of trans-stilbene unit. 0.8 mol% of TSMA almost eliminated the photoelastic birefringence. Also, we demonstrated that poly(MMA/TSMA) exhibited no orientational birefringence with 1.9 mol% of TSMA. 2.0 mol% of trans-stilbene almost eliminated the photoelastic birefringence of PMMA. Similarly, we demonstrated compensating orientational birefringence with 2.0 mol% of trans-stilbene. Based on the results, the effects of trans-stilbene unit in compensation of orientational birefringence are almost the same in the two methods. However, in compensation of photoelastic birefringence, the trans-stilbene unit had 2.5 times higher effect in the random copolymerization method than that in the anisotropic molecule dopant method. Photoelastic birefringence is caused in elastic deformation below Tg, in which the side chains are mainly orientated while the polymer main chains are scarcely orientated. Therefore, we concluded that addition of trans-stilbene unit to the side chain enhanced the effect for compensating photoelastic birefringence.
KW - Orientational birefringence
KW - Photoelastic birefringence
KW - trans-stilbene
KW - trans-stilbene methacrylate
UR - http://www.scopus.com/inward/record.url?scp=77951613209&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951613209&partnerID=8YFLogxK
U2 - 10.1117/12.848869
DO - 10.1117/12.848869
M3 - Conference contribution
AN - SCOPUS:77951613209
SN - 9780819479952
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Organic Photonic Materials and Devices XII
T2 - Organic Photonic Materials and Devices XII
Y2 - 26 January 2010 through 28 January 2010
ER -