TY - GEN
T1 - The geometry on Hyper-Kähler manifolds of type A∞
AU - Hattori, Kota
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Hyper-Kähler manifolds of type A∞ are noncompact complete Ricci-flat Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct. Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.
AB - Hyper-Kähler manifolds of type A∞ are noncompact complete Ricci-flat Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., 125, 637–642, 1989) and Goto (Geom. Funct. Anal., 4(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.
UR - http://www.scopus.com/inward/record.url?scp=84927628813&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84927628813&partnerID=8YFLogxK
U2 - 10.1007/978-4-431-55215-4_27
DO - 10.1007/978-4-431-55215-4_27
M3 - Conference contribution
AN - SCOPUS:84927628813
T3 - Springer Proceedings in Mathematics and Statistics
SP - 309
EP - 317
BT - Real and Complex Submanifolds
A2 - Suh, Young Jin
A2 - Ohnita, Yoshihiro
A2 - Lee, Hyunjin
A2 - Berndt, Jürgen
A2 - Kim, Byung Hak
PB - Springer New York LLC
T2 - Satellite Conference on Real and Complex Submanifolds ICM 2014 with 18th International Workshop on Differential Geometry
Y2 - 10 August 2014 through 12 August 2014
ER -