TY - JOUR
T1 - The inositol 1,4,5-trisphosphate receptor.
AU - Mikoshiba, K.
AU - Furuichi, T.
AU - Miyawaki, A.
AU - Yoshikawa, S.
AU - Maeda, N.
AU - Niinobe, M.
AU - Nakade, S.
AU - Nakagawa, T.
AU - Okano, H.
AU - Aruga, J.
PY - 1992
Y1 - 1992
N2 - Inositol 1,4,5-trisphosphate (InsP3) is a second messenger that releases Ca2+ from its intracellular stores. The InsP3 receptor has been purified and its cDNA has been cloned. We have found that the InsP3 receptor is identical to P400 protein, first identified as a protein enriched in cerebellar Purkinje cells. We have generated an L-fibroblast cell transfectant that produces cDNA-derived InsP3 receptors. The protein displays high affinity and specificity for InsP3. InsP3 induces greater Ca2+ release from membrane vesicles from transfected cells than from those from control L-fibroblasts. After incorporation of the purified InsP3 receptor into lipid bilayers InsP3-induced Ca2+ currents were demonstrated. These results suggest that the InsP3 receptor is involved in physiological Ca2+ release. Immunogold labelling using monoclonal antibodies against the receptor showed that it is highly concentrated on the smooth-surfaced endoplasmic reticulum and slightly on the outer nuclear membrane and rough endoplasmic reticulum; no labelling of Golgi apparatus, mitochondria and plasmalemma was seen. Cross-linking experiments showed that the receptor forms a homotetramer. The approximately 650 N-terminal amino acids are highly conserved between mouse and Drosophila, and this region contains the critical sequences for InsP3 binding. We have investigated the heterogeneity of the InsP3 receptor using the polymerase chain reaction and have found novel subtypes of the mouse InsP3 receptor that are expressed in a tissue-specific and developmentally specific manner.
AB - Inositol 1,4,5-trisphosphate (InsP3) is a second messenger that releases Ca2+ from its intracellular stores. The InsP3 receptor has been purified and its cDNA has been cloned. We have found that the InsP3 receptor is identical to P400 protein, first identified as a protein enriched in cerebellar Purkinje cells. We have generated an L-fibroblast cell transfectant that produces cDNA-derived InsP3 receptors. The protein displays high affinity and specificity for InsP3. InsP3 induces greater Ca2+ release from membrane vesicles from transfected cells than from those from control L-fibroblasts. After incorporation of the purified InsP3 receptor into lipid bilayers InsP3-induced Ca2+ currents were demonstrated. These results suggest that the InsP3 receptor is involved in physiological Ca2+ release. Immunogold labelling using monoclonal antibodies against the receptor showed that it is highly concentrated on the smooth-surfaced endoplasmic reticulum and slightly on the outer nuclear membrane and rough endoplasmic reticulum; no labelling of Golgi apparatus, mitochondria and plasmalemma was seen. Cross-linking experiments showed that the receptor forms a homotetramer. The approximately 650 N-terminal amino acids are highly conserved between mouse and Drosophila, and this region contains the critical sequences for InsP3 binding. We have investigated the heterogeneity of the InsP3 receptor using the polymerase chain reaction and have found novel subtypes of the mouse InsP3 receptor that are expressed in a tissue-specific and developmentally specific manner.
UR - http://www.scopus.com/inward/record.url?scp=0026451708&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026451708&partnerID=8YFLogxK
M3 - Review article
C2 - 1327678
AN - SCOPUS:0026451708
SN - 0300-5208
VL - 164
SP - 17-29; discussion 29-2935
JO - Ciba Foundation symposium
JF - Ciba Foundation symposium
ER -