TY - JOUR
T1 - The volume growth of hyper-Kähler manifolds of type A ∞
AU - Hattori, Kota
N1 - Funding Information:
Acknowledgements The author would like to thank Professor Hiroshi Konno for advice on this paper. The author was supported by Grant-in-Aid for JSPS Fellows (20 · 7215).
PY - 2011/10
Y1 - 2011/10
N2 - We study the volume growth of hyper-Kähler manifolds of type A ∞ constructed by Anderson-Kronheimer-LeBrun (Commun. Math. Phys. 125:637-642, 1989) and Goto (Geom. Funct. Anal. 4(4):424-454, 1994). These are noncompact complete 4-dimensional hyper-Kähler manifolds of infinite topological type. These manifolds have the same topology, but the hyper-Kähler metrics depend on the choice of parameters. By taking a certain parameter, we show that there exists a hyper-Kähler manifold of type A ∞ whose volume growth is r α for each 3<α<4.
AB - We study the volume growth of hyper-Kähler manifolds of type A ∞ constructed by Anderson-Kronheimer-LeBrun (Commun. Math. Phys. 125:637-642, 1989) and Goto (Geom. Funct. Anal. 4(4):424-454, 1994). These are noncompact complete 4-dimensional hyper-Kähler manifolds of infinite topological type. These manifolds have the same topology, but the hyper-Kähler metrics depend on the choice of parameters. By taking a certain parameter, we show that there exists a hyper-Kähler manifold of type A ∞ whose volume growth is r α for each 3<α<4.
KW - Gibbons-Hawking ansatz
KW - Hyper-Kähler quotient
KW - Volume growth
UR - http://www.scopus.com/inward/record.url?scp=80053053193&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80053053193&partnerID=8YFLogxK
U2 - 10.1007/s12220-010-9173-9
DO - 10.1007/s12220-010-9173-9
M3 - Article
AN - SCOPUS:80053053193
SN - 1050-6926
VL - 21
SP - 920
EP - 949
JO - Journal of Geometric Analysis
JF - Journal of Geometric Analysis
IS - 4
ER -