Theory of X-ray diffraction imaging

Research output: Chapter in Book/Report/Conference proceedingChapter


X-ray diffraction imaging (XDI) is a technique for visualizing the structures of non-crystalline particles with dimensions ranging from micrometers to submicrometers. In XDI experiments, non-crystalline particles are irradiated by X-rays with high transverse coherence. Then, the Fraunhofer diffraction pattern is recorded under the oversampling condition at a desired resolution. The electron density map of the particle projected along the direction of the incident X-ray is reconstructed by applying the phase-retrieval (PR) algorithm to the diffraction pattern alone. In this chapter, the spatial coherence of X-rays, the X-ray source necessary for XDI, and the representative algorithms used for PR are introduced.

Original languageEnglish
Title of host publicationSpringer Series in Optical Sciences
PublisherSpringer Verlag
Number of pages26
Publication statusPublished - 2018

Publication series

NameSpringer Series in Optical Sciences
ISSN (Print)0342-4111
ISSN (Electronic)1556-1534

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials


Dive into the research topics of 'Theory of X-ray diffraction imaging'. Together they form a unique fingerprint.

Cite this