Thermal conductivity of Si nanowires with δ-modulated dopant distribution by self-heated 3ω method and its length dependence

Fuwei Zhuge, Tsunaki Takahashi, Masaki Kanai, Kazuki Nagashima, Naoki Fukata, Ken Uchida, Takeshi Yanagida

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    Here, we report the thermal conductivity measurement of B-doped Si nanowires with δ dopant modulation on the surface using the self-heated 3ω method, which resembles the thermal dissipation in operating electronic devices. The thermal conductivity for δ-modulated Si nanowires of 45 nm diameter (∼23 W/m K) is found to agree well with that of non-doped Si nanowires reported previously, which is attributed to the dominant surface boundary scattering and the highly confined dopant distribution at the surface. Furthermore, through a length dependent study of the thermal conductivity (κ) from 400 nm to 4 μm, we found an apparent length dependence of κ at L < 2 μm. The phenomenon could not be simply interpreted by solely considering the ballistic effect in thermal transport, but can be accounted for by including the additional resistive processes that are associated with the thermalization of joule-heating emitted phonons, which opts in to suppress the thermal conductivity of nano-systems under the ballistic thermal transport regime.

    Original languageEnglish
    Article number065105
    JournalJournal of Applied Physics
    Volume124
    Issue number6
    DOIs
    Publication statusPublished - 2018 Aug 14

    ASJC Scopus subject areas

    • Physics and Astronomy(all)

    Fingerprint

    Dive into the research topics of 'Thermal conductivity of Si nanowires with δ-modulated dopant distribution by self-heated 3ω method and its length dependence'. Together they form a unique fingerprint.

    Cite this