Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography

Aya Mizutani, Kenichi Nagase, Akihiko Kikuchi, Hideko Kanazawa, Yoshikatsu Akiyama, Jun Kobayashi, Masahiko Annaka, Teruo Okano

Research output: Contribution to journalArticlepeer-review

83 Citations (Scopus)

Abstract

Poly(N-isopropylacrylamide) (PIPAAm) brush-grafted porous polystyrene beads with variable grafted polymer densities were prepared using surface-initiated atom transfer radical polymerization (ATRP) for applications in thermo-responsive chromatography. Utilization of these grafted beads as a stationary phase in aqueous chromatographic analysis of insulin provides a graft density-dependent analyte retention behavior. The separations calibration curve on PIPAAm-grafted polystyrene was obtained using pullulan standards and exhibited inflection points attributed to analyte diffusion into bead pores and partitioning into grafted PIPAAm brush surfaces. Presence of these inflection points supports a separation mechanism where insulin penetrates pores in polystyrene beads and hydrophobically interacts with PIPAAm brushes grafted within the pores. Control of PIPAAm brush graft density on polystyrene facilitates effective aqueous phase separation of peptides based on thermally modulated hydrophobic interactions with grafted PIPAAm within stationary phase pores. These results indicated that PIPAAm brush-grafted porous polystyrene beads prepared by surface-initiated ATRP was effective stationary phase of thermo-responsive chromatography for aqueous phase peptide separations.

Original languageEnglish
Pages (from-to)522-529
Number of pages8
JournalJournal of Chromatography A
Volume1217
Issue number4
DOIs
Publication statusPublished - 2010 Jan 22
Externally publishedYes

Keywords

  • Atom transfer radical polymerization
  • Poly(N-isopropylacrylamide)
  • Polymer brush
  • Thermo-responsive polymer

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Thermo-responsive polymer brush-grafted porous polystyrene beads for all-aqueous chromatography'. Together they form a unique fingerprint.

Cite this