Abstract
This paper proposes a new method for generating microcarries from bacterial cellulose (BC). BC, which is produced by specific bacteria, is a hydrogel composed of a three dimensional network structure formed by cellulose nanofibers. BC as an ECM-like nanofibrous material exhibits an excellent environment for cellular adhesion. Moreover, BC has a high biocompatibility and mechanical strength. From these properties, BC is expected to be applied for microcarriers, which is used for cultivating anchorage-dependent cells. Then, we developed a microfabrication process to create BC microcarriers by using gelatin microspheres as sacrificial architectures. In addition, the monodispersity of the formed BC microcarreirs was investigated.
Original language | English |
---|---|
Title of host publication | Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 5900-5903 |
Number of pages | 4 |
Volume | 2015-November |
ISBN (Print) | 9781424492718 |
DOIs | |
Publication status | Published - 2015 Nov 4 |
Event | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy Duration: 2015 Aug 25 → 2015 Aug 29 |
Other
Other | 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 15/8/25 → 15/8/29 |
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition
- Signal Processing
- Biomedical Engineering
- Health Informatics