Abstract
The crease set of an event horizon or a Cauchy horizon is an important object which determines the qualitative properties of the horizon. In particular, it determines the possible topologies of the spatial sections of the horizon. By Fermat's principle in geometric optics, we relate the crease set and the Maxwell set of a smooth function in the context of singularity theory. We thereby give a classification of generic topological structures of the Maxwell sets and the generic topologies of the spatial section of the horizon.
Original language | English |
---|---|
Pages (from-to) | 1095-1122 |
Number of pages | 28 |
Journal | International Journal of Modern Physics D |
Volume | 20 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2011 Jun 5 |
Keywords
- Black hole topology
- catastrophe
ASJC Scopus subject areas
- Mathematical Physics
- Astronomy and Astrophysics
- Space and Planetary Science