TY - JOUR
T1 - Triploid planarian reproduces truly bisexually with euploid gametes produced through a different meiotic system between sex
AU - Chinone, Ayako
AU - Nodono, Hanae
AU - Matsumoto, Midori
N1 - Funding Information:
Acknowledgments We thank Dr. Marina Dan, Dr. Motonori Hoshi, and Dr. Gary Wessel for critically reading the manuscript. This work was supported by Grant-in-Aid for Challenging Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan to M.M. (No. 23657008) and Grant-in-Aid for JSPS Fellows to A.C. (No. 25-5247) from Japan Society for the Promotion of Science.
PY - 2014/6
Y1 - 2014/6
N2 - Although polyploids are common among plants and some animals, polyploidization often causes reproductive failure. Triploids, in particular, are characterized by the problems of chromosomal pairing and segregation during meiosis, which may cause aneuploid gametes and results in sterility. Thus, they are generally considered to reproduce only asexually. In the case of the Platyhelminthes Dugesia ryukyuensis, populations with triploid karyotypes are normally found in nature as both fissiparous and oviparous triploids. Fissiparous triploids can also be experimentally sexualized if they are fed sexual planarians, developing both gonads and other reproductive organs. Fully sexualized worms begin reproducing by copulation rather than fission. In this study, we examined the genotypes of the offspring obtained by breeding sexualized triploids and found that the offspring inherited genes from both parents, i.e., they reproduced truly bisexually. Furthermore, meiotic chromosome behavior in triploid sexualized planarians differed significantly between male and female germ lines, in that female germ line cells remained triploid until prophase I, whereas male germ line cells appeared to become diploid before entry into meiosis. Oocytes at the late diplotene stage contained not only paired bivalents but also unpaired univalents that were suggested to produce diploid eggs if they remained in subsequent processes. Triploid planarians may therefore form euploid gametes by different meiotic systems in female and male germ lines and thus are be able to reproduce sexually in contrast to many other triploid organisms.
AB - Although polyploids are common among plants and some animals, polyploidization often causes reproductive failure. Triploids, in particular, are characterized by the problems of chromosomal pairing and segregation during meiosis, which may cause aneuploid gametes and results in sterility. Thus, they are generally considered to reproduce only asexually. In the case of the Platyhelminthes Dugesia ryukyuensis, populations with triploid karyotypes are normally found in nature as both fissiparous and oviparous triploids. Fissiparous triploids can also be experimentally sexualized if they are fed sexual planarians, developing both gonads and other reproductive organs. Fully sexualized worms begin reproducing by copulation rather than fission. In this study, we examined the genotypes of the offspring obtained by breeding sexualized triploids and found that the offspring inherited genes from both parents, i.e., they reproduced truly bisexually. Furthermore, meiotic chromosome behavior in triploid sexualized planarians differed significantly between male and female germ lines, in that female germ line cells remained triploid until prophase I, whereas male germ line cells appeared to become diploid before entry into meiosis. Oocytes at the late diplotene stage contained not only paired bivalents but also unpaired univalents that were suggested to produce diploid eggs if they remained in subsequent processes. Triploid planarians may therefore form euploid gametes by different meiotic systems in female and male germ lines and thus are be able to reproduce sexually in contrast to many other triploid organisms.
UR - http://www.scopus.com/inward/record.url?scp=84904178854&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84904178854&partnerID=8YFLogxK
U2 - 10.1007/s00412-013-0449-2
DO - 10.1007/s00412-013-0449-2
M3 - Article
C2 - 24402417
AN - SCOPUS:84904178854
SN - 0009-5915
VL - 123
SP - 265
EP - 272
JO - Chromosoma
JF - Chromosoma
IS - 3
ER -