Uncertainty-aware Non-linear Model Predictive Control for Human-following Companion Robot

Shunichi Sekiguchi, Ayanori Yorozu, Kazuhiro Kuno, Masaki Okada, Yutaka Watanabe, Masaki Takahashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

For a companion robot that follows a person as an assistant, predicting human walking is important to produce a proactive movement that is helpful to maintain an appropriate area decided by the human personal space. However, fully trusting the prediction may result in obstructing human walking because it is not always accurate. Hence, we consider the estimation of uncertainty (i.e., entropy) of the prediction to enable the robot to move without causing overconfident motion and without being late for the person it follows. To consider this uncertainty of the prediction to the controller, we introduce a reliability value that changes based on the entropy of the prediction. This value expresses the extent the controller should trust the prediction result, and it affects the cost function of our controller. We propose an uncertainty-aware robot controller based on nonlinear model predictive control to realize natural human-followings. We found that our uncertainty-aware control system can produce an appropriate robot movement, such as not obstructing the human walking and avoiding delay, in both simulations using actual human walking data and real-robot experiments.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8316-8322
Number of pages7
ISBN (Electronic)9781728190778
DOIs
Publication statusPublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 2021 May 302021 Jun 5

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period21/5/3021/6/5

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Uncertainty-aware Non-linear Model Predictive Control for Human-following Companion Robot'. Together they form a unique fingerprint.

Cite this