TY - JOUR
T1 - Use of an alternative signature peptide during development of a LC-MS/MS assay of plasma nivolumab levels applicable for multiple species
AU - Ohuchi, Mayu
AU - Yagishita, Shigehiro
AU - Taguchi, Kazuaki
AU - Goto, Yasushi
AU - Fukahori, Masaru
AU - Enoki, Yuki
AU - Shimada, Takashi
AU - Yamaguchi, Masakazu
AU - Matsumoto, Kazuaki
AU - Hamada, Akinobu
N1 - Funding Information:
This study was supported in part by “Research on Regulatory Science of Pharmaceuticals and Medical Devices” funds (A.H.) from the Japan Agency for Medical Research and development (AMED).
Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Recently, immune checkpoint inhibitors, including anti-programmed cell death protein 1 (PD-1) antibodies, have dramatically changed treatment strategies for several cancers. In pharmacokinetic/pharmacodynamic studies, experiments using a variety of animal species are assumed. We have identified optimal multiple reaction monitoring transitions for signature candidate peptides of nivolumab in human, mouse, and rat plasma and developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify nivolumab (an anti-PD-1 antibody) using trastuzumab as the internal standard. Calibration curves were linear in the range of 1–200 µg/mL. The intra- and inter-day precision and accuracy in human plasma fulfilled Food and Drug Administration guideline criteria for bioanalytical validation. There was no need to change the measurement method in mouse plasma. On the other hand, in rat plasma, an interference peak was observed at a retention time similar to that of the surrogate peptide ASGITFSNSGMHWVR (550.75 > 661.50) employed in human and mouse plasma. Therefore, we confirmed that ASQSVSSYLAWYQQKPGQAPR (785.0 > 940.2) can be used as an alternate nivolumab surrogate peptide in rat plasma at the same concentration range as used in human and mouse plasma. Using our method, the concentration range and a gradual increase in trough value were confirmed in clinical samples from two antibody-treated patients, including one with gastric cancer and one with non-small-cell lung cancer. The time course and blood concentration transition also were evaluated in nivolumab administration experiments in mouse and rat. The present study showed that the selection of the optimal peptide is essential for accurate LC-MS/MS measurement of nivolumab concentration in human, mouse, and rat plasma. The method developed here is expected to be of use in non-clinical and clinical pharmacokinetic studies.
AB - Recently, immune checkpoint inhibitors, including anti-programmed cell death protein 1 (PD-1) antibodies, have dramatically changed treatment strategies for several cancers. In pharmacokinetic/pharmacodynamic studies, experiments using a variety of animal species are assumed. We have identified optimal multiple reaction monitoring transitions for signature candidate peptides of nivolumab in human, mouse, and rat plasma and developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify nivolumab (an anti-PD-1 antibody) using trastuzumab as the internal standard. Calibration curves were linear in the range of 1–200 µg/mL. The intra- and inter-day precision and accuracy in human plasma fulfilled Food and Drug Administration guideline criteria for bioanalytical validation. There was no need to change the measurement method in mouse plasma. On the other hand, in rat plasma, an interference peak was observed at a retention time similar to that of the surrogate peptide ASGITFSNSGMHWVR (550.75 > 661.50) employed in human and mouse plasma. Therefore, we confirmed that ASQSVSSYLAWYQQKPGQAPR (785.0 > 940.2) can be used as an alternate nivolumab surrogate peptide in rat plasma at the same concentration range as used in human and mouse plasma. Using our method, the concentration range and a gradual increase in trough value were confirmed in clinical samples from two antibody-treated patients, including one with gastric cancer and one with non-small-cell lung cancer. The time course and blood concentration transition also were evaluated in nivolumab administration experiments in mouse and rat. The present study showed that the selection of the optimal peptide is essential for accurate LC-MS/MS measurement of nivolumab concentration in human, mouse, and rat plasma. The method developed here is expected to be of use in non-clinical and clinical pharmacokinetic studies.
KW - Human
KW - Liquid chromatography/mass spectrometry
KW - Mouse
KW - Nivolumab
KW - Pharmacokinetic study
KW - Rat
UR - http://www.scopus.com/inward/record.url?scp=85098472734&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85098472734&partnerID=8YFLogxK
U2 - 10.1016/j.jchromb.2020.122489
DO - 10.1016/j.jchromb.2020.122489
M3 - Article
C2 - 33385769
AN - SCOPUS:85098472734
SN - 1570-0232
VL - 1162
JO - Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences
JF - Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences
M1 - 122489
ER -