TY - GEN
T1 - Velocity control of MR-fluid clutch actuator based on disturbance observer
AU - Miura, Kazumasa
AU - Katsura, Seiichiro
PY - 2013
Y1 - 2013
N2 - Safety operatons are one of most important issues in human society, when robots are introduced there. Recently, human-assist systems acting directly on humans have been developed and opportunities for humans to touch robots are increasing. However, active actuators are often used to generate force in order to perform any tasks and they constitute a possible danger to humans when they are loss of control. Then, stable passive systems would be substituted for active ones. Passive systems will not generate force by themselves. Only when external force acts on them, they generate reaction force. Considering these properties, passive systems are stable and appropriate for the human society because they would be little risks for humans when they are loss of control. In this paper, the passive actuator and the active actuator are combined together in order to generate the torque. The passive system is used like a clutch. By control of the current of passive system, the output torque from MR-fluid actuator is also controlled. The maximum output of MR-fluid actuator is limited by shear stress of MR fluids. By these properties, MR-fluid actuator has high safety for humans. In this paper, the velocity control of MR-fluid actuator is proposed.
AB - Safety operatons are one of most important issues in human society, when robots are introduced there. Recently, human-assist systems acting directly on humans have been developed and opportunities for humans to touch robots are increasing. However, active actuators are often used to generate force in order to perform any tasks and they constitute a possible danger to humans when they are loss of control. Then, stable passive systems would be substituted for active ones. Passive systems will not generate force by themselves. Only when external force acts on them, they generate reaction force. Considering these properties, passive systems are stable and appropriate for the human society because they would be little risks for humans when they are loss of control. In this paper, the passive actuator and the active actuator are combined together in order to generate the torque. The passive system is used like a clutch. By control of the current of passive system, the output torque from MR-fluid actuator is also controlled. The maximum output of MR-fluid actuator is limited by shear stress of MR fluids. By these properties, MR-fluid actuator has high safety for humans. In this paper, the velocity control of MR-fluid actuator is proposed.
UR - http://www.scopus.com/inward/record.url?scp=84893577526&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893577526&partnerID=8YFLogxK
U2 - 10.1109/IECON.2013.6700102
DO - 10.1109/IECON.2013.6700102
M3 - Conference contribution
AN - SCOPUS:84893577526
SN - 9781479902248
T3 - IECON Proceedings (Industrial Electronics Conference)
SP - 5900
EP - 5905
BT - Proceedings, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society
T2 - 39th Annual Conference of the IEEE Industrial Electronics Society, IECON 2013
Y2 - 10 November 2013 through 14 November 2013
ER -