Viscosity measurement based on the tapping-induced free vibration of sessile droplets using MEMS-based piezoresistive cantilevers

Thanh Vinh Nguyen, Minh Dung Nguyen, Hidetoshi Takahashi, Kiyoshi Matsumoto, Isao Shimoyama

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

We report a simple technique to measure the free vibration of microlitre-sized droplets using an array of thirteen MEMS-based piezoresistive cantilevers and demonstrate its application for the measurement of viscosity. Because the damping of the free vibration of a liquid droplet is known to be affected by the viscosity of the liquid, measuring the vibration of a droplet allows the viscosity to be estimated from a dilute sample volume. However, conventional methods to measure the droplet vibration require sophisticated apparatuses, which hinder the development of a portable viscometer. Here, we show that MEMS-based piezoresistive cantilevers can be an excellent tool to measure the vibration of a sessile droplet due to the high sensitivity and simplicity of the readout scheme. Using the cantilever array, we analyse the normal force distribution on the contact area of a sessile droplet in the static state and during the vibration. Next, we show that the viscosity (from ∼1-30 mPa s) can be estimated within an error of less than 10% from the attenuation rate of the cantilever output during the tapping-induced vibration of small droplets (∼2.4 μL). In addition to the advantage of the small sample volume, the proposed viscometer has simple operation and readout schemes, which are desirable for many applications, including point-of-care testing and drug development.

Original languageEnglish
Pages (from-to)3670-3676
Number of pages7
JournalLab on a Chip
Volume15
Issue number18
DOIs
Publication statusPublished - 2015 Jul 24
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • Biochemistry
  • Chemistry(all)
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Viscosity measurement based on the tapping-induced free vibration of sessile droplets using MEMS-based piezoresistive cantilevers'. Together they form a unique fingerprint.

Cite this