Vortex lattices in binary Bose-Einstein condensates: Collective modes, quantum fluctuations, and intercomponent entanglement

Takumi Yoshino, Shunsuke Furukawa, Masahito Ueda

Research output: Contribution to journalArticlepeer-review

Abstract

We study binary Bose-Einstein condensates subject to synthetic magnetic fields in mutually parallel or antiparallel directions. Within the mean-field theory, the two types of fields have been shown to give the same vortex-lattice phase diagram. We develop an improved effective field theory to study properties of collective modes and ground-state intercomponent entanglement. Here, we point out the need to introduce renormalized coupling constants for coarse-grained densities. We show that the low-energy excitation spectra for the two types of fields are related to each other by suitable rescaling with the renormalized coupling constants. By calculating the entanglement entropy, we find that for an intercomponent repulsion (attraction), the two components are more strongly entangled in the case of parallel (antiparallel) fields, in qualitative agreement with recent studies for a quantum (spin) Hall regime. We also find that the entanglement spectrum exhibits an anomalous square-root dispersion relation, which leads to a subleading logarithmic term in the entanglement entropy. All of these are confirmed by numerical calculations based on the Bogoliubov theory with the lowest-Landau-level approximation. Finally, we investigate the effects of quantum fluctuations on the phase diagrams by calculating the correction to the ground-state energy due to zero-point fluctuations in the Bogoliubov theory. We find that the boundaries between rhombic-, square-, and rectangular-lattice phases shift appreciably with a decrease in the filling factor.

Original languageEnglish
Article number105302
JournalJournal of Physics B: Atomic, Molecular and Optical Physics
Volume55
Issue number10
DOIs
Publication statusPublished - 2022 May 18

Keywords

  • multicomponent Bose-Einstein condensates
  • quantum entanglement
  • synthetic gauge fields
  • vortex lattices

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Vortex lattices in binary Bose-Einstein condensates: Collective modes, quantum fluctuations, and intercomponent entanglement'. Together they form a unique fingerprint.

Cite this