Weak homogenization of anisotropic diffusion on pre-Sierpiński carpets

Martin T. Barlow, Kumiko Hattori, Tetsuya Hattori, Hiroshi Watanabe

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


We study a kind of 'restoration of isotropy" on the pre-Sierpiński carpet. Let Rxn(r) and Ryn(r) be the effective resistances in the x and y directions, respectively, of the Sierpiński carpet at the nth stage of its construction, if it is made of anisotropic material whose anisotropy is parametrized by the ratio of resistances for a unit square: r = Ry0 / Rx0. We prove that isotropy is weakly restored asymptotically in the sense that for all sufficiently large n the ratio Ryn(r) / Rxn(r) is bounded by positive constants independent of r. The ratio decays exponentially fast when r ≫ 1. Furthermore, it is proved that the effective resistances asymptotically grow exponentially with an exponent equal to that found by Barlow and Bass for the isotropic case r = 1.

Original languageEnglish
Pages (from-to)1-27
Number of pages27
JournalCommunications in Mathematical Physics
Issue number1
Publication statusPublished - 1997 Jan 1
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics


Dive into the research topics of 'Weak homogenization of anisotropic diffusion on pre-Sierpiński carpets'. Together they form a unique fingerprint.

Cite this