3-trees with few vertices of degree 3 in circuit graphs

Atsuhiro Nakamoto, Yoshiaki Oda, Katsuhiro Ota

研究成果: Article査読

12 被引用数 (Scopus)

抄録

A circuit graph(G, C) is a 2-connected plane graph G with an outer cycle C such that from each inner vertex v, there are three disjoint paths to C. In this paper, we shall show that a circuit graph with n vertices has a 3-tree (i.e., a spanning tree with maximum degree at most 3) with at most frac(n - 7, 3) vertices of degree 3. Our estimation for the number of vertices of degree 3 is sharp. Using this result, we prove that a 3-connected graph with n vertices on a surface Fχ with Euler characteristic χ ≥ 0 has a 3-tree with at most frac(n, 3) + cχ vertices of degree 3, where cχ is a constant depending only on Fχ.

本文言語English
ページ(範囲)666-672
ページ数7
ジャーナルDiscrete Mathematics
309
4
DOI
出版ステータスPublished - 2009 3月 6

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学

フィンガープリント

「3-trees with few vertices of degree 3 in circuit graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル