抄録
We consider a one-dimensional infinite chain of coupled charged harmonic oscillators in a magnetic field with a small stochastic perturbation of order ϵ. We prove that for a space–time scale of order ϵ- 1 the density of energy distribution (Wigner distribution) evolves according to a linear phonon Boltzmann equation. We also prove that an appropriately scaled limit of solutions of the linear phonon Boltzmann equation is a solution of the fractional diffusion equation with exponent 5 / 6.
本文言語 | English |
---|---|
ページ(範囲) | 151-182 |
ページ数 | 32 |
ジャーナル | Communications in Mathematical Physics |
巻 | 372 |
号 | 1 |
DOI | |
出版ステータス | Published - 2019 11月 1 |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 数理物理学