抄録
We show that each equation in the first Painlevé hierarchy is equivalent to a system of nonlinear equations determined by a kind of generating function, and that it admits the Painlevé property. Our results are derived from the fact that the first Painlevé hierarchy follows from isomonodrornic deformation of certain linear systems with an irregular singular point.
本文言語 | English |
---|---|
ページ(範囲) | 105-109 |
ページ数 | 5 |
ジャーナル | Proceedings of the Japan Academy Series A: Mathematical Sciences |
巻 | 80 |
号 | 6 |
DOI | |
出版ステータス | Published - 2004 6月 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)