A linear conservative extension of zermelo-fraenkel set theory

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In this paper, we develop the system LZF of set theory with the unrestricted comprehension in full linear logic and show that LZF is a conservative extension of ZF- i.e., the Zermelo-Fraenkel set theory without the axiom of regularity. We formulate LZF as a sequent calculus with abstraction terms and prove the partial cut-elimination theorem for it. The cut-elimination result ensures the subterm property for those formulais which contain only terms corresponding to sets in ZF-. This implies that LZF is a conservative extension of ZF- and therefore the former is consistent relative to the latter.

本文言語English
ページ(範囲)361-392
ページ数32
ジャーナルStudia Logica
56
3
DOI
出版ステータスPublished - 1996 1月 1
外部発表はい

ASJC Scopus subject areas

  • 論理
  • 科学史および科学哲学

フィンガープリント

「A linear conservative extension of zermelo-fraenkel set theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル