A low-scale flavon model with a ℤ N symmetry

Tetsutaro Higaki, Junichiro Kawamura

研究成果: Article査読

9 被引用数 (Scopus)


We propose a model that explains the fermion mass hierarchy by the Froggatt-Nielsen mechanism with a discrete ℤNF symmetry. As a concrete model, we study a super-symmetric model with a single flavon coupled to the minimal supersymmetric Standard Model. Flavon develops a TeV scale vacuum expectation value for realizing flavor hierarchy, an appropriate μ-term and the electroweak scale, hence the model has a low cutoff scale. We demonstrate how the flavon is successfully stabilized together with the Higgs bosons in the model. The discrete flavor symmetry ℤNF controls not only the Standard Model fermion masses, but also the Higgs potential and a mass of the Higgsino which is a good candidate for dark matter. The hierarchy in the Higgs-flavon sector is determined in order to make the model anomaly-free and realize a stable electroweak vacuum. We show that this model can explain the fermion mass hierarchy, realistic Higgs-flavon potential and thermally produced dark matter at the same time. We discuss flavor violating processes induced by the light flavon which would be detected in future experiments.

ジャーナルJournal of High Energy Physics
出版ステータスPublished - 2020 3月 1

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学


「A low-scale flavon model with a ℤ N symmetry」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。