A new adjoint problem for two-dimensional helmholtz equation to calculate topological derivatives of the objective functional having tangential derivative quantities

Peijun Tang, Toshiro Matsumoto, Hiroshi Isakari, Toru Takahashi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A special topology optimization problem is considered whose objective functional consists of tangential derivative of the potential on the boundary for two-dimensional Helmholtz equation. In order to derive the adjoint problem, the functional of the conventional topology optimizations required a boundary integral of the potential and its flux. For the present objective functional having the tangential derivative, integration by parts is applied to the part having the tangential derivative of the variation of the potential to generate a tractable adjoint problem. The derived adjoint problem is used in the variation of the objective function, and the topological derivative is derived in the conventional expression.

本文言語English
ページ(範囲)74-82
ページ数9
ジャーナルInternational Journal of Computational Methods and Experimental Measurements
9
1
DOI
出版ステータスPublished - 2020 3月 4
外部発表はい

ASJC Scopus subject areas

  • 計算力学
  • モデリングとシミュレーション
  • コンピュータ サイエンスの応用
  • 計算数学
  • 応用数学

フィンガープリント

「A new adjoint problem for two-dimensional helmholtz equation to calculate topological derivatives of the objective functional having tangential derivative quantities」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル