A silicon quantum-dot-coupled nuclear spin qubit

Bas Hensen, Wister Wei Huang, Chih Hwan Yang, Kok Wai Chan, Jun Yoneda, Tuomo Tanttu, Fay E. Hudson, Arne Laucht, Kohei M. Itoh, Thaddeus D. Ladd, Andrea Morello, Andrew S. Dzurak

研究成果: Letter査読

60 被引用数 (Scopus)

抄録

Single nuclear spins in the solid state are a potential future platform for quantum computing1–3, because they possess long coherence times4–6 and offer excellent controllability7. Measurements can be performed via localized electrons, such as those in single atom dopants8,9 or crystal defects10–12. However, establishing long-range interactions between multiple dopants or defects is challenging13,14. Conversely, in lithographically defined quantum dots, tunable interdot electron tunnelling allows direct coupling of electron spin-based qubits in neighbouring dots15–20. Moreover, the compatibility with semiconductor fabrication techniques21 may allow for scaling to large numbers of qubits in the future. Unfortunately, hyperfine interactions are typically too weak to address single nuclei. Here we show that for electrons in silicon metal–oxide–semiconductor quantum dots the hyperfine interaction is sufficient to initialize, read out and control single 29Si nuclear spins. This approach combines the long coherence times of nuclear spins with the flexibility and scalability of quantum dot systems. We demonstrate high-fidelity projective readout and control of the nuclear spin qubit, as well as entanglement between the nuclear and electron spins. Crucially, we find that both the nuclear spin and electron spin retain their coherence while moving the electron between quantum dots. Hence we envision long-range nuclear–nuclear entanglement via electron shuttling3. Our results establish nuclear spins in quantum dots as a powerful new resource for quantum processing.

本文言語English
ページ(範囲)13-17
ページ数5
ジャーナルNature Nanotechnology
15
1
DOI
出版ステータスPublished - 2020 1月 1

ASJC Scopus subject areas

  • バイオエンジニアリング
  • 原子分子物理学および光学
  • 生体医工学
  • 材料科学一般
  • 凝縮系物理学
  • 電子工学および電気工学

フィンガープリント

「A silicon quantum-dot-coupled nuclear spin qubit」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル