抄録
We propose a flexible statistical model for high-dimensional quantitative data on a hypercube. Our model, the structural gradient model (SGM), is based on a one-to-one map on the hypercube that is a solution to an optimal transport problem. As we show with many examples, SGM can describe various dependence structures including correlation and heteroscedasticity. The likelihood function is explicitly expressed without any normalizing constant. Simulation of SGM is achieved through a direct extension of the inverse function method. The maximum likelihood estimation of SGM is reduced to the determinant-maximization known as a convex optimization problem. In particular, a lasso-type estimation is available by adding constraints. SGM is compared with graphical Gaussian models and mixture models.
本文言語 | English |
---|---|
ページ(範囲) | 1291-1314 |
ページ数 | 24 |
ジャーナル | Statistica Sinica |
巻 | 21 |
号 | 3 |
DOI | |
出版ステータス | Published - 2011 7月 |
外部発表 | はい |
ASJC Scopus subject areas
- 統計学および確率
- 統計学、確率および不確実性