TY - JOUR
T1 - A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications
AU - Nagai, Takeharu
AU - Ibata, Keiji
AU - Park, Eun Sun
AU - Kubota, Mie
AU - Mikoshiba, Katsuhiko
AU - Miyawaki, Atsushi
N1 - Funding Information:
Acknowledgments The plasmid construct pEGFP-N1-NPY was provided by W. Almers. We are grateful to W. Almers and R.Y. Tsien for valuable comments, M. Yamamoto-Hino, Y. Kawano, K. Shimizu, T. Miyata, and K. Nakamura for technical advice, and H. Kuramochi for technical assistance. This work was partly supported by grants from CREST (the Japan Science and Technology Corporation) to A.M., the Japanese Ministry of Education, Science and Culture to A.M., Special Postdoctoral Researcher Program of RIKEN to T.N., and President’s Special Research Grant of RIKEN to T.N.
PY - 2002/1
Y1 - 2002/1
N2 - The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has provided a myriad of applications for biological systems. Over the last several years, mutagenesis studies have improved folding properties of GFP (refs 1, 2). However, slow maturation is still a big obstacle to the use of GFP variants for visualization. These problems are exacerbated when GFP variants are expressed at 37°C and/or targeted to certain organelles. Thus, obtaining GFP variants that mature more efficiently is crucial for the development of expanded research applications. Among Aequorea GFP variants, yellow fluorescent proteins (YFPs) are relatively acid-sensitive, and uniquely quenched by chloride ion (CI−)3. For YFP to be fully and stably fluorescent, mutations that decrease the sensitivity to both pH and CI− are desired. Here we describe the development of an improved version of YFP named "Venus". Venus contains a novel mutation, F46L, which at 37°C greatly accelerates oxidation of the chromophore, the rate-limiting step of maturation. As a result of other mutations, F64L/M153T/V163A/S175G, Venus folds well and is relatively tolerant of exposure to acidosis and CI−. We succeeded in efficiently targeting a neuropeptide Y-Venus fusion protein to the dense-core granules of PC12 cells. Its secretion was readily monitored by measuring release of fluorescence into the medium. The use of Venus as an acceptor allowed early detection of reliable signals of fluorescence resonance energy transfer (FRET) for Ca2+ measurements in brain slices. With the improved speed and efficiency of maturation and the increased resistance to environment, Venus will enable fluorescent labelings that were not possible before.
AB - The green fluorescent protein (GFP) from the jellyfish Aequorea victoria has provided a myriad of applications for biological systems. Over the last several years, mutagenesis studies have improved folding properties of GFP (refs 1, 2). However, slow maturation is still a big obstacle to the use of GFP variants for visualization. These problems are exacerbated when GFP variants are expressed at 37°C and/or targeted to certain organelles. Thus, obtaining GFP variants that mature more efficiently is crucial for the development of expanded research applications. Among Aequorea GFP variants, yellow fluorescent proteins (YFPs) are relatively acid-sensitive, and uniquely quenched by chloride ion (CI−)3. For YFP to be fully and stably fluorescent, mutations that decrease the sensitivity to both pH and CI− are desired. Here we describe the development of an improved version of YFP named "Venus". Venus contains a novel mutation, F46L, which at 37°C greatly accelerates oxidation of the chromophore, the rate-limiting step of maturation. As a result of other mutations, F64L/M153T/V163A/S175G, Venus folds well and is relatively tolerant of exposure to acidosis and CI−. We succeeded in efficiently targeting a neuropeptide Y-Venus fusion protein to the dense-core granules of PC12 cells. Its secretion was readily monitored by measuring release of fluorescence into the medium. The use of Venus as an acceptor allowed early detection of reliable signals of fluorescence resonance energy transfer (FRET) for Ca2+ measurements in brain slices. With the improved speed and efficiency of maturation and the increased resistance to environment, Venus will enable fluorescent labelings that were not possible before.
UR - http://www.scopus.com/inward/record.url?scp=0036138908&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036138908&partnerID=8YFLogxK
U2 - 10.1038/nbt0102-87
DO - 10.1038/nbt0102-87
M3 - Article
C2 - 11753368
AN - SCOPUS:0036138908
SN - 1087-0156
VL - 20
SP - 87
EP - 90
JO - Nature Biotechnology
JF - Nature Biotechnology
IS - 1
ER -