TY - JOUR
T1 - Accelerated protein digestion and separation with picoliter volume utilizing nanofluidics
AU - Yamamoto, Koki
AU - Morikawa, Kyojiro
AU - Shimizu, Hisashi
AU - Sano, Hiroki
AU - Kazoe, Yutaka
AU - Kitamori, Takehiko
N1 - Funding Information:
The authors would like to thank Prof. Yasushi Ishihama from Kyoto University for fruitful discussions. Fabrication and observation facilities were provided in part by the Academic Consortium for Nano and Micro Fabrication of four universities (The University of Tokyo, Tokyo Institute of Technology, Keio University and Waseda University, JAPAN) and the Advanced Characterization Nanotechnology Platform of the University of Tokyo, supported by “Nanotechnology Platform” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors gratefully acknowledge financial support from the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST): JPMJCR14G1.
Publisher Copyright:
© 2022 The Royal Society of Chemistry.
PY - 2022/1/31
Y1 - 2022/1/31
N2 - Single cell analyses can provide critical biological insight into cellular heterogeneity. In particular, the proteome, which governs cell functions, is much more difficult to analyze because it is principally impossible to amplify proteins compared to nucleic acids. The most promising approach to single cell proteomics is based on the liquid chromatography mass spectrometry (LC-MS) platform. However, pretreatments before MS detection have two critical issues for single cell analysis: analyte loss as a result of adsorption and artifacts due to the duration of analysis. This is a serious problem because single cells have a limited number of protein molecules and a small volume. To solve these issues, we developed an integrated nanofluidic device to manipulate samples on a femtoliter to picoliter (fL-pL) scale to achieve high-throughput analysis via suppressing analyte loss. This device can perform tryptic digestion, chromatographic separation, and non-labeled detection with high consistency. In addition, we introduced an open/close valve by physical deformation of glass on a nanometer scale to independently modify the nanochannel surfaces and control sample aliquots. The injection system equipped with this valve achieved an injection volume of 1.0 ± 0.1 pL. By using this integrated device, we found that the chromatogram of bulk-digestion for 12 hours resembled that of 15 min-digestion in the nanochannel, which indicated that these conditions reached a similar state of digestion. Therefore, an integrated device for ultra-fast protein analysis was developed on a 1 pL scale for the first time.
AB - Single cell analyses can provide critical biological insight into cellular heterogeneity. In particular, the proteome, which governs cell functions, is much more difficult to analyze because it is principally impossible to amplify proteins compared to nucleic acids. The most promising approach to single cell proteomics is based on the liquid chromatography mass spectrometry (LC-MS) platform. However, pretreatments before MS detection have two critical issues for single cell analysis: analyte loss as a result of adsorption and artifacts due to the duration of analysis. This is a serious problem because single cells have a limited number of protein molecules and a small volume. To solve these issues, we developed an integrated nanofluidic device to manipulate samples on a femtoliter to picoliter (fL-pL) scale to achieve high-throughput analysis via suppressing analyte loss. This device can perform tryptic digestion, chromatographic separation, and non-labeled detection with high consistency. In addition, we introduced an open/close valve by physical deformation of glass on a nanometer scale to independently modify the nanochannel surfaces and control sample aliquots. The injection system equipped with this valve achieved an injection volume of 1.0 ± 0.1 pL. By using this integrated device, we found that the chromatogram of bulk-digestion for 12 hours resembled that of 15 min-digestion in the nanochannel, which indicated that these conditions reached a similar state of digestion. Therefore, an integrated device for ultra-fast protein analysis was developed on a 1 pL scale for the first time.
UR - http://www.scopus.com/inward/record.url?scp=85126490500&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126490500&partnerID=8YFLogxK
U2 - 10.1039/d1lc00923k
DO - 10.1039/d1lc00923k
M3 - Article
C2 - 35133382
AN - SCOPUS:85126490500
SN - 1473-0197
VL - 22
SP - 1162
EP - 1170
JO - Lab on a Chip
JF - Lab on a Chip
IS - 6
ER -