Accuracy Evaluation and Prediction of Single-Image Camera Calibration

Susumu Kikkawa, Fumio Okura, Daigo Muramatsu, Yasushi Yagi, Hideo Saito

研究成果: Article査読


This paper proposes an application to statistically predict the accuracy of single-image geometric camera calibration that uses given 2D-3D correspondences. Deriving both camera intrinsics and extrinsics from correspondences between a single image and a 3D shape, is important for the scene analysis when the optical system of the camera is lost, such as in the analyses of traffic accidents. It is unclear whether the single-image calibration will be successful in practice, particularly when the number of 2D-3D correspondences is small, even if we could assign accurate correspondences by manual labor. To this end, we perform a systematic evaluation of the camera parameter accuracy using synthetic environments. Based on the statistics observed during the experiments, our application predicts the calibration accuracy from simple variables (e.g., the area that correspondences could be given). Since the prediction process does not rely on 3D shapes, it provides an estimate of the success of the calibration before time-consuming processes, i.e., 3D scanning and 2D-3D correspondence mapping.

ジャーナルIEEE Access
出版ステータスPublished - 2023

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 材料科学(全般)
  • 工学(全般)
  • 電子工学および電気工学


「Accuracy Evaluation and Prediction of Single-Image Camera Calibration」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。