Active Learningにおける不確実サンプル選択によるアノテーション効率化

Yasufumi Kawano, Yoshiki Nota, Rinpei Mochizuki, Yoshimitsu Aoki

研究成果: Article査読

抄録

Active learning refers to label-efficient algorithms that use the most representative samples for labeling when creating training data. In this paper, we propose a model that derives the most informative unlabeled samples from the output of a task model. The tasks arc a classification problem, multi-label classification and a semantic segmentation problem. The model consists of an uncertainty indicator generator and a task model. After training the task model with labeled samples, the model predicts unlabeled samples, and based on the prediction results, the uncertainty indicator generator outputs an uncertainty indicator for each unlabeled sample. Samples with a higher uncertainty indicator are considered to be more informative and selected. As a result of experiments using multiple datasets, our model achieved better accuracy than conventional active learning methods and reduced execution time by a factor of 10.

寄稿の翻訳タイトルImproving Annotation Efficiency through Uncertain Sample Selection in Active Learning
本文言語Japanese
ページ(範囲)211-216
ページ数6
ジャーナルSeimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering
88
2
DOI
出版ステータスPublished - 2022

Keywords

  • Active learning
  • Annotation
  • Deep learning
  • Uncertainty sample selection

ASJC Scopus subject areas

  • 機械工学

フィンガープリント

「Active Learningにおける不確実サンプル選択によるアノテーション効率化」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル