TY - GEN
T1 - Activity Detection using 2D LIDAR for Healthcare and Monitoring
AU - Bouazizi, Mondher
AU - Ye, Chen
AU - Ohtsuki, Tomoaki
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Monitoring elderly people living alone is of the utmost importance given the amount of risk they are exposed to. Being aware of the activities of the elderly person in real time could help prevent/detect dangerous event that might occur such as falling. In this paper, we propose a method for activity detection using a 2D LIght Detection and Ranging (LIDAR) and deep learning. Unlike conventional work, where an activity refers to moving from one position to another, we use the term 'activity' to refer to a set of movements including walking, standing, falling and sitting. Not only does our approach detect these activities, but it also identifies a given person from his gait, and identifies unsteady gait (i.e., when he is about to fall or feeling dizzy). Throughout our experiments, we show that the proposed approach could reach an accuracy equal to 92.3% and 91.3% in activity and unsteady gait detection, respectively. It is also capable of identifying up to 3 people's gait with an accuracy equal to 92.4% using 10 seconds of walking data.
AB - Monitoring elderly people living alone is of the utmost importance given the amount of risk they are exposed to. Being aware of the activities of the elderly person in real time could help prevent/detect dangerous event that might occur such as falling. In this paper, we propose a method for activity detection using a 2D LIght Detection and Ranging (LIDAR) and deep learning. Unlike conventional work, where an activity refers to moving from one position to another, we use the term 'activity' to refer to a set of movements including walking, standing, falling and sitting. Not only does our approach detect these activities, but it also identifies a given person from his gait, and identifies unsteady gait (i.e., when he is about to fall or feeling dizzy). Throughout our experiments, we show that the proposed approach could reach an accuracy equal to 92.3% and 91.3% in activity and unsteady gait detection, respectively. It is also capable of identifying up to 3 people's gait with an accuracy equal to 92.4% using 10 seconds of walking data.
UR - http://www.scopus.com/inward/record.url?scp=85127274660&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127274660&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM46510.2021.9685470
DO - 10.1109/GLOBECOM46510.2021.9685470
M3 - Conference contribution
AN - SCOPUS:85127274660
T3 - 2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
BT - 2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE Global Communications Conference, GLOBECOM 2021
Y2 - 7 December 2021 through 11 December 2021
ER -