抄録
An analysis of robustness and a design principle for advanced motion control in robotics are presented. The performance of motion control in a single joint is evaluated according to its robustness. A robust control technique for robotic motion is developed. For quick recovery, the feedforward loop compensates the interactive torque, which the observer identifies with a certain time delay. If the time delay of the observer is negligibly small, an acceleration controller is realized. In the observer-based system, it is possible to show that this delay also determines the sensitivity function, which is the index of how the controller reduces the effect of not only the interactive torque but also the parameter variations. In a multi-degree-of-freedom motion system, the total mechanical system is described by the dynamical equations and the kinematic equations. If a drive system in each joint is an observer-based acceleration controller, only the kinematics need be taken into account in the motion control. Several examples in robotics of motion systems applied to position control and force control systems are discussed.
本文言語 | English |
---|---|
ページ | 356-359 |
ページ数 | 4 |
出版ステータス | Published - 1989 12月 1 |
イベント | 15th Annual Conference of IEEE Industrial Electronics Society - IECON '89. Part 1 - Philadelphia, PA, USA 継続期間: 1989 11月 6 → 1989 11月 10 |
Other
Other | 15th Annual Conference of IEEE Industrial Electronics Society - IECON '89. Part 1 |
---|---|
City | Philadelphia, PA, USA |
Period | 89/11/6 → 89/11/10 |
ASJC Scopus subject areas
- 制御およびシステム工学
- 電子工学および電気工学