Algebraic dependence of Hamiltonians on the coordinate ring of the quantum group GLq(n)

研究成果: Article査読

抄録

On the coordinate ring of GLq(n), we show that the trace of qXm, the q-analogue of the mth power of Xε{lunate}GLq(n), is represented by the polynomial of tr(qXk), 1≤k≤n-1, and det qX for m≥n by using the quantum Cayley-Hamilton formula. This shows that, if one can take tr(qXk), k=1, 2, ..., as commutative Hamiltonians on the coordinate ring of GLq(n), the number of algebraic independent Hamiltonians is finite. Furthermore we show that the first Hamiltonian tr(qX) and the second Hamiltonian tr(qX2) commute with each other. We observe the q-analogue of the Toda molecule by using quantum group symmetry.

本文言語English
ページ(範囲)43-50
ページ数8
ジャーナルPhysics Letters A
183
1
DOI
出版ステータスPublished - 1993 11月 29
外部発表はい

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Algebraic dependence of Hamiltonians on the coordinate ring of the quantum group GLq(n)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル