Algebraic independence of the values of the Hecke-Mahler series and its derivatives at algebraic numbers

Taka Aki Tanaka, Yusuke Tanuma

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We show that the Hecke-Mahler series, the generating function of the sequence {[nω]}n=1∞ for ω real, has the following property: Its values and its derivatives of any order, at any nonzero distinct algebraic numbers inside the unit circle, are algebraically independent if ω is a quadratic irrational number satisfying a suitable condition.

本文言語English
ページ(範囲)2369-2384
ページ数16
ジャーナルInternational Journal of Number Theory
14
9
DOI
出版ステータスPublished - 2018 10月 1

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Algebraic independence of the values of the Hecke-Mahler series and its derivatives at algebraic numbers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル