Algebraic independence over ℚp

Peter Bundschuh, Kumiko Nishioka

研究成果: Article査読

抄録

Let f(x) be a power series ∑n≥1 ζ(n)xe(n), where (e(n)) is a strictly increasing linear recurrence sequence of nonnegative integers, and (ζ(n)) a sequence of roots of unity in ℚp satisfying an appropriate technical condition. Then we are mainly interested in characterizing the algebraic independence over ℚp of the elements f(α1),…, f(αt) from ℂp in terms of the distinct α1,…, αt ∈ ℚp satisfying 0 < |ατ |p < 1 for τ = 1,…, t. A striking application of our basic result says that, in the case e(n) = n, the set {f(α)| α ∈ ℚp, 0 < |α|p < 1} is algebraically independent over ℚp if (ζ(n)) satisfies the “technical condition”. We close with a conjecture concerning more general sequences (e(n)).

本文言語English
ページ(範囲)519-533
ページ数15
ジャーナルJournal de Theorie des Nombres de Bordeaux
16
3
DOI
出版ステータスPublished - 2004
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Algebraic independence over ℚp」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル