TY - JOUR
T1 - Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis
AU - Takeshita, Masaru
AU - Kuno, Atsushi
AU - Suzuki, Katsuya
AU - Matsuda, Atsushi
AU - Shimazaki, Hiroko
AU - Nakagawa, Tomomi
AU - Otomo, Yuki
AU - Kabe, Yasuaki
AU - Suematsu, Makoto
AU - Narimatsu, Hisashi
AU - Takeuchi, Tsutomu
N1 - Funding Information:
This work was supported by an institutional research grant from Keio University, the Center of Innovation Trial Program of the Japan Science and Technology Agency, and the Tailor-made Medical Treatment Program (BioBank Japan Project) of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
Publisher Copyright:
© 2016 Takeshita et al.
PY - 2016/5/21
Y1 - 2016/5/21
N2 - Background: Nearly all secreted proteins are glycosylated, and serum glycoproteins that exhibit disease-associated glycosylation changes have potential to be biomarkers. In rheumatoid arthritis (RA), C-reactive protein (CRP), and matrix metalloproteinase-3 (MMP-3) are widely used as serologic biomarkers, but they lack sufficient specificity or precision. We performed comparative glycosylation profiling of MMP-3 using a recently developed antibody-overlay lectin microarray technology that allows semicomprehensive and quantitative analysis of specific protein glycosylation to develop an RA-specific disease activity biomarker. Methods: Serum was taken from patients with RA (n = 24) whose disease activity was scored using composite measures, and MMP-3 was immunoprecipitated and subjected to lectin microarray analysis. A disease activity index (DAI) based on lectin signal was developed and validated using another cohort (n = 60). Synovial fluid MMP-3 in patients with RA and patients with osteoarthritis (OA) was also analyzed. Results: Intense signals were observed on a sialic acid-binding lectin (Agrocybe cylindracea galectin [ACG]) and O-glycan-binding lectins (Jacalin, Agaricus bisporus agglutinin [ABA], and Amaranthus caudatus agglutinin [ACA]) by applying subnanogram levels of serum MMP-3. ACG, ABA, and ACA revealed differences in MMP-3 quantity, and Jacalin revealed differences in MMP-3 quality. The resultant index, ACG/Jacalin, correlated well with disease activity. Further validation using another cohort confirmed that this index correlated well with several DAIs and their components, and reflected DAI changes following RA treatment, with correlations greater than those for MMP-3 and CRP. Furthermore, MMP-3, which generated a high ACG/Jacalin score, accumulated in synovial fluid of patients with RA but not in that of patients with OA. Sialidase digestion revealed that the difference in quality was derived from O-glycan α-2,6-sialylation. Conclusions: This is the first report of a glycoprotein biomarker using glycan change at a local lesion to assess disease activity in autoimmune diseases. Differences in the degree of serum MMP-3 α-2,6-sialylation may be a useful index for estimating disease activity.
AB - Background: Nearly all secreted proteins are glycosylated, and serum glycoproteins that exhibit disease-associated glycosylation changes have potential to be biomarkers. In rheumatoid arthritis (RA), C-reactive protein (CRP), and matrix metalloproteinase-3 (MMP-3) are widely used as serologic biomarkers, but they lack sufficient specificity or precision. We performed comparative glycosylation profiling of MMP-3 using a recently developed antibody-overlay lectin microarray technology that allows semicomprehensive and quantitative analysis of specific protein glycosylation to develop an RA-specific disease activity biomarker. Methods: Serum was taken from patients with RA (n = 24) whose disease activity was scored using composite measures, and MMP-3 was immunoprecipitated and subjected to lectin microarray analysis. A disease activity index (DAI) based on lectin signal was developed and validated using another cohort (n = 60). Synovial fluid MMP-3 in patients with RA and patients with osteoarthritis (OA) was also analyzed. Results: Intense signals were observed on a sialic acid-binding lectin (Agrocybe cylindracea galectin [ACG]) and O-glycan-binding lectins (Jacalin, Agaricus bisporus agglutinin [ABA], and Amaranthus caudatus agglutinin [ACA]) by applying subnanogram levels of serum MMP-3. ACG, ABA, and ACA revealed differences in MMP-3 quantity, and Jacalin revealed differences in MMP-3 quality. The resultant index, ACG/Jacalin, correlated well with disease activity. Further validation using another cohort confirmed that this index correlated well with several DAIs and their components, and reflected DAI changes following RA treatment, with correlations greater than those for MMP-3 and CRP. Furthermore, MMP-3, which generated a high ACG/Jacalin score, accumulated in synovial fluid of patients with RA but not in that of patients with OA. Sialidase digestion revealed that the difference in quality was derived from O-glycan α-2,6-sialylation. Conclusions: This is the first report of a glycoprotein biomarker using glycan change at a local lesion to assess disease activity in autoimmune diseases. Differences in the degree of serum MMP-3 α-2,6-sialylation may be a useful index for estimating disease activity.
KW - Biomarker
KW - Glycoprotein
KW - MMP-3
KW - Rheumatoid arthritis
UR - http://www.scopus.com/inward/record.url?scp=84969545688&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969545688&partnerID=8YFLogxK
U2 - 10.1186/s13075-016-1013-2
DO - 10.1186/s13075-016-1013-2
M3 - Article
C2 - 27209430
AN - SCOPUS:84969545688
SN - 1478-6354
VL - 18
JO - Arthritis Research and Therapy
JF - Arthritis Research and Therapy
IS - 1
M1 - 112
ER -