Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS2: Implications for 2D Electronic Devices

Milos Krbal, Vit Prokop, Alexey A. Kononov, Jhonatan Rodriguez Pereira, Jan Mistrik, Alexander V. Kolobov, Paul J. Fons, Yuta Saito, Shogo Hatayama, Yi Shuang, Yuji Sutou, Stepan A. Rozhkov, Jens R. Stellhorn, Shinjiro Hayakawa, Igor Pis, Federica Bondino

研究成果: Article査読

14 被引用数 (Scopus)


Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have demonstrated a very strong application potential. In order to realize it, the synthesis of stoichiometric 2D TMDCs on a large scale is crucial. Here, we consider a typical TMDC representative, MoS2, and present an approach for the fabrication of well-ordered crystalline filmsviathe crystallization of a thin amorphous layer by annealing at 800 °C, which was investigated in terms of long-range and short-range orders. Strong preferential crystal growth of layered MoS2along the ⟨002⟩ crystallographic plane from the as-deposited 3D amorphous phase is discussed together with the mechanism of the crystallization process disclosed by molecular dynamic simulations using the Vienna Ab initio Simulation Package. We believe that the obtained results may be generalized for other 2D materials. The proposed approach demonstrates a simple and efficient way to fabricate thin 2D TMDCs for applications in nano- and optoelectronic devices.

ジャーナルACS Applied Nano Materials
出版ステータスPublished - 2021 9月 24

ASJC Scopus subject areas

  • 材料科学(全般)


「Amorphous-to-Crystal Transition in Quasi-Two-Dimensional MoS2: Implications for 2D Electronic Devices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。