An accessibility-incorporated method for accurate prediction of RNA-RNA interactions from sequence data

Yuki Kato, Tomoya Mori, Kengo Sato, Shingo Maegawa, Hiroshi Hosokawa, Tatsuya Akutsu

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Motivation: RNA-RNA interactions via base pairing play a vital role in the post-transcriptional regulation of gene expression. Efficient identification of targets for such regulatory RNAs needs not only discriminative power for positive and negative RNA-RNA interacting sequence data but also accurate prediction of interaction sites from positive data. Recently, a few studies have incorporated interaction site accessibility into their prediction methods, indicating the enhancement of predictive performance on limited positive data. Results: Here we show the efficacy of our accessibility-based prediction model RactIPAce on newly compiled datasets. The first experiment in interaction site prediction shows that RactIPAce achieves the best predictive performance on the newly compiled dataset of experimentally verified interactions in the literature as compared with the state-of-the-art methods. In addition, the second experiment in discrimination between positive and negative interacting pairs reveals that the combination of accessibility-based methods including our approach can be effective to discern real interacting RNAs. Taking these into account, our prediction model can be effective to predict interaction sites after screening for real interacting RNAs, which will boost the functional analysis of regulatory RNAs.

本文言語English
ページ(範囲)202-209
ページ数8
ジャーナルBioinformatics
33
2
DOI
出版ステータスPublished - 2017 1月 15

ASJC Scopus subject areas

  • 統計学および確率
  • 生化学
  • 分子生物学
  • コンピュータ サイエンスの応用
  • 計算理論と計算数学
  • 計算数学

フィンガープリント

「An accessibility-incorporated method for accurate prediction of RNA-RNA interactions from sequence data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル