TY - JOUR
T1 - An electrochemical aptamer-based sensor prepared by utilizing the strong interaction between a DNA aptamer and diamond
AU - Asai, Kai
AU - Yamamoto, Takashi
AU - Nagashima, Shinichi
AU - Ogata, Genki
AU - Hibino, Hiroshi
AU - Einaga, Yasuaki
N1 - Funding Information:
This work was, in part, supported by the JSPS KAKENHI Grant Number JP17J02923.
Publisher Copyright:
© 2020 The Royal Society of Chemistry.
PY - 2020/1/21
Y1 - 2020/1/21
N2 - Stable and continuous biosensing of electroactive species in vivo has been achieved by using boron-doped diamond (BDD) electrodes owing to their outstanding electrochemical properties. However, the present problem in biosensing using BDD electrodes is how to specifically measure/detect the target molecules, including electrochemically inactive species. A possible solution is to fabricate an electrochemical aptamer-based (E-AB) sensor using a BDD electrode. In a preliminary investigation, we found that DNA aptamers strongly adsorb on the BDD surface and the aptamer-adsorbed BDD apparently worked as an E-AB sensor. The present study reports the performance of the aptamer-adsorbed BDD electrode as an E-AB sensor. Doxorubicin (DOX), a widely used chemotherapeutic, was chosen as a target molecule. The sensor could be prepared by just dipping BDD in an aptamer solution for only 30 min, and the electrochemical signals were dependent on the DOX concentration. The adsorption of DNA was strong enough for continuous measurements and even a sonication treatment. Such behaviors were not observed when using gold and glassy carbon electrodes. In a kinetic measurement, distortion by a sluggish response was observed for both association and dissociation phases, indicating that the interaction between DOX and the aptamer involves several kinetic processes. By fitting to a Langmuir isotherm, a limit of detection of 49 nM and a maximum detectable concentration of 2.3 μM were obtained. Although the sensitivity was lower than those of the well-established E-AB sensors of gold, the values are within a drug's therapeutic range. Overall, the present work demonstrates that a DNA aptamer and a BDD electrode is an effective combination for an E-AB sensor with stable sensitivity, and a wide variety of DNA aptamers can be applied without any special treatment.
AB - Stable and continuous biosensing of electroactive species in vivo has been achieved by using boron-doped diamond (BDD) electrodes owing to their outstanding electrochemical properties. However, the present problem in biosensing using BDD electrodes is how to specifically measure/detect the target molecules, including electrochemically inactive species. A possible solution is to fabricate an electrochemical aptamer-based (E-AB) sensor using a BDD electrode. In a preliminary investigation, we found that DNA aptamers strongly adsorb on the BDD surface and the aptamer-adsorbed BDD apparently worked as an E-AB sensor. The present study reports the performance of the aptamer-adsorbed BDD electrode as an E-AB sensor. Doxorubicin (DOX), a widely used chemotherapeutic, was chosen as a target molecule. The sensor could be prepared by just dipping BDD in an aptamer solution for only 30 min, and the electrochemical signals were dependent on the DOX concentration. The adsorption of DNA was strong enough for continuous measurements and even a sonication treatment. Such behaviors were not observed when using gold and glassy carbon electrodes. In a kinetic measurement, distortion by a sluggish response was observed for both association and dissociation phases, indicating that the interaction between DOX and the aptamer involves several kinetic processes. By fitting to a Langmuir isotherm, a limit of detection of 49 nM and a maximum detectable concentration of 2.3 μM were obtained. Although the sensitivity was lower than those of the well-established E-AB sensors of gold, the values are within a drug's therapeutic range. Overall, the present work demonstrates that a DNA aptamer and a BDD electrode is an effective combination for an E-AB sensor with stable sensitivity, and a wide variety of DNA aptamers can be applied without any special treatment.
UR - http://www.scopus.com/inward/record.url?scp=85078520416&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078520416&partnerID=8YFLogxK
U2 - 10.1039/c9an01976f
DO - 10.1039/c9an01976f
M3 - Article
C2 - 31764923
AN - SCOPUS:85078520416
SN - 0003-2654
VL - 145
SP - 544
EP - 549
JO - Analyst
JF - Analyst
IS - 2
ER -