抄録
We consider the random operator: -d/mω(dx)d+/dx+qω(x), where mω(dx) and qω(x) are a stationary ergodic random measure and a random function respectively. To this general case, we extend Kotani's theorem which asserts that the absolutely continuous spectrum is completely determined by the Ljapounov indices. Our framework includes the case of stochastic Jacobi matrices treated by Simon.
本文言語 | English |
---|---|
ページ(範囲) | 387-402 |
ページ数 | 16 |
ジャーナル | Communications in Mathematical Physics |
巻 | 103 |
号 | 3 |
DOI | |
出版ステータス | Published - 1986 9月 |
外部発表 | はい |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 数理物理学