TY - JOUR
T1 - Analysis of gene expression profiles of soft tissue sarcoma using a combination of knowledge-based filtering with integration of multiple statistics
AU - Takahashi, Anna
AU - Nakayama, Robert
AU - Ishibashi, Nanako
AU - Doi, Ayano
AU - Ichinohe, Risa
AU - Ikuyo, Yoriko
AU - Takahashi, Teruyoshi
AU - Marui, Shigetaka
AU - Yasuhara, Koji
AU - Nakamura, Tetsuro
AU - Sugita, Shintaro
AU - Sakamoto, Hiromi
AU - Yoshida, Teruhiko
AU - Hasegawa, Tadashi
AU - Takahashi, Hiro
N1 - Publisher Copyright:
© 2014 Takahashi et al.
PY - 2014
Y1 - 2014
N2 - The diagnosis and treatment of soft tissue sarcomas (STS) have been difficult. Of the diverse histological subtypes, undifferentiated pleomorphic sarcoma (UPS) is particularly difficult to diagnose accurately, and its classification per se is still controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1, and STAT1) and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY). These genes showed significant differential expression among histological subtypes, including UPS, and showed associations with overall survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.84×10-6and adjusted p value 2.99×10-3after the permutation test). According to the literature, the 25 genes selected are useful not only as markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation.
AB - The diagnosis and treatment of soft tissue sarcomas (STS) have been difficult. Of the diverse histological subtypes, undifferentiated pleomorphic sarcoma (UPS) is particularly difficult to diagnose accurately, and its classification per se is still controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1, and STAT1) and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY). These genes showed significant differential expression among histological subtypes, including UPS, and showed associations with overall survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.84×10-6and adjusted p value 2.99×10-3after the permutation test). According to the literature, the 25 genes selected are useful not only as markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation.
UR - http://www.scopus.com/inward/record.url?scp=84906958162&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906958162&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0106801
DO - 10.1371/journal.pone.0106801
M3 - Article
C2 - 25188299
AN - SCOPUS:84906958162
SN - 1932-6203
VL - 9
JO - PloS one
JF - PloS one
IS - 9
M1 - e106801
ER -