Analysis of multivariate Markov modulated Poisson processes

Ushio Sumita, Yasushi Masuda

研究成果: Article査読

2 被引用数 (Scopus)

抄録

A multivariate Markov modulated Poisson process M(t) = [M1(t),...,MK(t)] governed by a Markov chain {J(t):t ≥ 0} on N = {0, 1,...,N} is introduced where jumps of Mk(t) occur according to a Poisson process with intensity λ(k, i) whenever the Markov chain J(t) is in state i, 1 ≤ k ≤ K, 0 ≤ i ≤ N. Of interest to the paper is the time-dependent joint distribution of the multivariate process [M(t), J(t)]. In particular, the Laplace transform generating function is explicitly derived and its probabilistic interpretation is given. Asymptotic expansions of the cross moments and covariance functions of M(t) are also discussed.

本文言語English
ページ(範囲)37-45
ページ数9
ジャーナルOperations Research Letters
12
1
DOI
出版ステータスPublished - 1992 7月
外部発表はい

ASJC Scopus subject areas

  • ソフトウェア
  • 経営科学およびオペレーションズ リサーチ
  • 産業および生産工学
  • 応用数学

フィンガープリント

「Analysis of multivariate Markov modulated Poisson processes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル