Anticipating Traffic Accidents with Adaptive Loss and Large-Scale Incident DB

Tomoyuki Suzuki, Hirokatsu Kataoka, Yoshimitsu Aoki, Yutaka Satoh

研究成果: Conference contribution

63 被引用数 (Scopus)

抄録

In this paper, we propose a novel approach for traffic accident anticipation through (i) Adaptive Loss for Early Anticipation (AdaLEA) and (ii) a large-scale self-annotated incident database for anticipation. The proposed AdaLEA allows a model to gradually learn an earlier anticipation as training progresses. The loss function adaptively assigns penalty weights depending on how early the model can anticipate a traffic accident at each epoch. Additionally, we construct a Near-miss Incident DataBase for anticipation. This database contains an enormous number of traffic near-miss incident videos and annotations for detail evaluation of two tasks, risk anticipation and risk-factor anticipation. In our experimental results, we found our proposal achieved the highest scores for risk anticipation (+6.6% better on mean average precision (mAP) and 2.36 sec earlier than previous work on the average time-to-collision (ATTC)) and risk-factor anticipation (+4.3% better on mAP and 0.70 sec earlier than previous work on ATTC).

本文言語English
ホスト出版物のタイトルProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
出版社IEEE Computer Society
ページ3521-3529
ページ数9
ISBN(電子版)9781538664209
DOI
出版ステータスPublished - 2018 12月 14
イベント31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
継続期間: 2018 6月 182018 6月 22

出版物シリーズ

名前Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN(印刷版)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
国/地域United States
CitySalt Lake City
Period18/6/1818/6/22

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Anticipating Traffic Accidents with Adaptive Loss and Large-Scale Incident DB」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル