抄録
We combined a library of medium-sized molecules with iterative screening using multiple machine learning algorithms that were ligand-based, which resulted in a large increase of the hit rate against a protein-protein interaction target. This was demonstrated by inhibition assays using a PPI target, Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2), and a deep neural network model based on the first-round assay data showed a highest hit rate of 27.3%. Using the models, we identified novel active and non-flat compounds far from public datasets, expanding the chemical space.
本文言語 | English |
---|---|
ページ(範囲) | 6722-6725 |
ページ数 | 4 |
ジャーナル | Chemical Communications |
巻 | 59 |
号 | 44 |
DOI | |
出版ステータス | Published - 2023 5月 11 |
ASJC Scopus subject areas
- 電子材料、光学材料、および磁性材料
- 触媒
- セラミックおよび複合材料
- 化学 (全般)
- 表面、皮膜および薄膜
- 金属および合金
- 材料化学