Applying deep learning to iterative screening of medium-sized molecules for protein-protein interaction-targeted drug discovery

Yugo Shimizu, Tomoki Yonezawa, Yu Bao, Junichi Sakamoto, Mariko Yokogawa, Toshio Furuya, Masanori Osawa, Kazuyoshi Ikeda

研究成果: Article査読

抄録

We combined a library of medium-sized molecules with iterative screening using multiple machine learning algorithms that were ligand-based, which resulted in a large increase of the hit rate against a protein-protein interaction target. This was demonstrated by inhibition assays using a PPI target, Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2), and a deep neural network model based on the first-round assay data showed a highest hit rate of 27.3%. Using the models, we identified novel active and non-flat compounds far from public datasets, expanding the chemical space.

本文言語English
ページ(範囲)6722-6725
ページ数4
ジャーナルChemical Communications
59
44
DOI
出版ステータスPublished - 2023 5月 11

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 触媒
  • セラミックおよび複合材料
  • 化学 (全般)
  • 表面、皮膜および薄膜
  • 金属および合金
  • 材料化学

フィンガープリント

「Applying deep learning to iterative screening of medium-sized molecules for protein-protein interaction-targeted drug discovery」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル