Bell-state tomography in a silicon many-electron artificial molecule

Ross C.C. Leon, Chih Hwan Yang, Jason C.C. Hwang, Julien Camirand Lemyre, Tuomo Tanttu, Wei Huang, Jonathan Y. Huang, Fay E. Hudson, Kohei M. Itoh, Arne Laucht, Michel Pioro-Ladrière, Andre Saraiva, Andrew S. Dzurak

研究成果: Article査読

19 被引用数 (Scopus)

抄録

An error-corrected quantum processor will require millions of qubits, accentuating the advantage of nanoscale devices with small footprints, such as silicon quantum dots. However, as for every device with nanoscale dimensions, disorder at the atomic level is detrimental to quantum dot uniformity. Here we investigate two spin qubits confined in a silicon double quantum dot artificial molecule. Each quantum dot has a robust shell structure and, when operated at an occupancy of 5 or 13 electrons, has single spin-12 valence electron in its p- or d-orbital, respectively. These higher electron occupancies screen static electric fields arising from atomic-level disorder. The larger multielectron wavefunctions also enable significant overlap between neighbouring qubit electrons, while making space for an interstitial exchange-gate electrode. We implement a universal gate set using the magnetic field gradient of a micromagnet for electrically driven single qubit gates, and a gate-voltage-controlled inter-dot barrier to perform two-qubit gates by pulsed exchange coupling. We use this gate set to demonstrate a Bell state preparation between multielectron qubits with fidelity 90.3%, confirmed by two-qubit state tomography using spin parity measurements.

本文言語English
論文番号3228
ジャーナルNature communications
12
1
DOI
出版ステータスPublished - 2021 12月 1

ASJC Scopus subject areas

  • 化学一般
  • 生化学、遺伝学、分子生物学一般
  • 物理学および天文学一般

フィンガープリント

「Bell-state tomography in a silicon many-electron artificial molecule」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル