抄録
Bell's theorem proves the existence of entangled quantum states with no classical counterpart. An experimental violation of Bell's inequality demands simultaneously high fidelities in the preparation, manipulation and measurement of multipartite quantum entangled states, and provides a single-number benchmark for the performance of devices that use such states for quantum computing. We demonstrate a Bell/ Clauser-Horne-Shimony-Holt inequality violation with Bell signals up to 2.70(9), using the electron and the nuclear spins of a single phosphorus atom embedded in a silicon nanoelectronic device. Two-qubit state tomography reveals that our prepared states match the target maximally entangled Bell states with >96% fidelity. These experiments demonstrate complete control of the two-qubit Hilbert space of a phosphorus atom and highlight the important function of the nuclear qubit to expand the computational basis and maximize the readout fidelity.
本文言語 | English |
---|---|
ページ(範囲) | 242-246 |
ページ数 | 5 |
ジャーナル | Nature Nanotechnology |
巻 | 11 |
号 | 3 |
DOI | |
出版ステータス | Published - 2016 3月 3 |
ASJC Scopus subject areas
- バイオエンジニアリング
- 原子分子物理学および光学
- 生体医工学
- 材料科学一般
- 凝縮系物理学
- 電子工学および電気工学