Bounds to electron spin qubit variability for scalable CMOS architectures

Jesús D. Cifuentes, Tuomo Tanttu, Will Gilbert, Jonathan Y. Huang, Ensar Vahapoglu, Ross C.C. Leon, Santiago Serrano, Dennis Otter, Daniel Dunmore, Philip Y. Mai, Frédéric Schlattner, Meng Ke Feng, Kohei Itoh, Nikolay Abrosimov, Hans Joachim Pohl, Michael Thewalt, Arne Laucht, Chih Hwan Yang, Christopher C. Escott, Wee Han LimFay E. Hudson, Rajib Rahman, Andrew S. Dzurak, Andre Saraiva

研究成果: Article査読

6 被引用数 (Scopus)

抄録

Spins of electrons in silicon MOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO2 as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO2 interface, compiling experiments across 12 devices, and develop theoretical tools to analyse these results. Atomistic tight binding and path integral Monte Carlo methods are adapted to describe fluctuations in devices with millions of atoms by directly analysing their wavefunctions and electron paths instead of their energy spectra. We correlate the effect of roughness with the variability in qubit position, deformation, valley splitting, valley phase, spin-orbit coupling and exchange coupling. These variabilities are found to be bounded, and they lie within the tolerances for scalable architectures for quantum computing as long as robust control methods are incorporated.

本文言語English
論文番号4299
ジャーナルNature communications
15
1
DOI
出版ステータスPublished - 2024 12月

ASJC Scopus subject areas

  • 化学一般
  • 生化学、遺伝学、分子生物学一般
  • 物理学および天文学一般

フィンガープリント

「Bounds to electron spin qubit variability for scalable CMOS architectures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル