Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics

Anthony Beaucamp, Peter Simon, Phillip Charlton, Christopher King, Atsushi Matsubara, Konrad Wegener

研究成果: Article査読

60 被引用数 (Scopus)


Silicon carbide is a ceramic material with a desirable combination of high thermal and mechanical stability, making it ideal for optical application in aerospace and next generation lithography. It is however notoriously difficult to machine down to super-fine finish when the shape is other than flat or spherical. In this paper, we describe the application of a “semi-elastic” machining method called shape adaptive grinding (SAG), in which an elastic tool is combined with rigid pellets made of nickel or resin, to which super abrasives are bonded. A comprehensive model of the physical interaction between SAG tool and workpiece is proposed, and used to understand the mechanics driving brittle-ductile transition on ceramic materials such as SiC. Machining parameters adequate for optical finishing are then derived from the model and demonstrated on an aspheric silicon carbide workpiece, which was manufactured by reaction bonding and coated with a layer of pure SiC by chemical vapour deposition (CVD). Through SAG processing and final polishing, this aspheric mirror was improved from an initial form error of 40 µm down to 112 nm Peak-to-Valley, with no residual damage visible on the surface.

ジャーナルInternational Journal of Machine Tools and Manufacture
出版ステータスPublished - 2017 4月 1

ASJC Scopus subject areas

  • 機械工学
  • 産業および生産工学


「Brittle-ductile transition in shape adaptive grinding (SAG) of SiC aspheric optics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。